3.431 \(\int \frac {1}{x^3 (a+b x^3)^{3/2}} \, dx\)

Optimal. Leaf size=255 \[ -\frac {7 \sqrt {a+b x^3}}{6 a^2 x^2}-\frac {7 \sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{6 \sqrt [4]{3} a^2 \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2}{3 a x^2 \sqrt {a+b x^3}} \]

[Out]

2/3/a/x^2/(b*x^3+a)^(1/2)-7/6*(b*x^3+a)^(1/2)/a^2/x^2-7/18*b^(2/3)*(a^(1/3)+b^(1/3)*x)*EllipticF((b^(1/3)*x+a^
(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((a^(2/3)-a^(1/3)*
b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/a^2/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+
b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {290, 325, 218} \[ -\frac {7 \sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{6 \sqrt [4]{3} a^2 \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {7 \sqrt {a+b x^3}}{6 a^2 x^2}+\frac {2}{3 a x^2 \sqrt {a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(a + b*x^3)^(3/2)),x]

[Out]

2/(3*a*x^2*Sqrt[a + b*x^3]) - (7*Sqrt[a + b*x^3])/(6*a^2*x^2) - (7*Sqrt[2 + Sqrt[3]]*b^(2/3)*(a^(1/3) + b^(1/3
)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[
((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(6*3^(1/4)*a^2*Sqrt
[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx &=\frac {2}{3 a x^2 \sqrt {a+b x^3}}+\frac {7 \int \frac {1}{x^3 \sqrt {a+b x^3}} \, dx}{3 a}\\ &=\frac {2}{3 a x^2 \sqrt {a+b x^3}}-\frac {7 \sqrt {a+b x^3}}{6 a^2 x^2}-\frac {(7 b) \int \frac {1}{\sqrt {a+b x^3}} \, dx}{12 a^2}\\ &=\frac {2}{3 a x^2 \sqrt {a+b x^3}}-\frac {7 \sqrt {a+b x^3}}{6 a^2 x^2}-\frac {7 \sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{6 \sqrt [4]{3} a^2 \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 54, normalized size = 0.21 \[ -\frac {\sqrt {\frac {b x^3}{a}+1} \, _2F_1\left (-\frac {2}{3},\frac {3}{2};\frac {1}{3};-\frac {b x^3}{a}\right )}{2 a x^2 \sqrt {a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(a + b*x^3)^(3/2)),x]

[Out]

-1/2*(Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[-2/3, 3/2, 1/3, -((b*x^3)/a)])/(a*x^2*Sqrt[a + b*x^3])

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{3} + a}}{b^{2} x^{9} + 2 \, a b x^{6} + a^{2} x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a)/(b^2*x^9 + 2*a*b*x^6 + a^2*x^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^3 + a)^(3/2)*x^3), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 321, normalized size = 1.26 \[ -\frac {2 b x}{3 \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}\, a^{2}}+\frac {7 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) b}}\right )}{18 \sqrt {b \,x^{3}+a}\, a^{2}}-\frac {\sqrt {b \,x^{3}+a}}{2 a^{2} x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(b*x^3+a)^(3/2),x)

[Out]

-2/3*b/a^2*x/((x^3+a/b)*b)^(1/2)-1/2*(b*x^3+a)^(1/2)/a^2/x^2+7/18*I/a^2*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2*(-a*b
^2)^(1/3)/b-1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*3^(1/2)/(-a*b^2)^(1/3)*b)^(1/2)*((x-(-a*b^2)^(1/3)/b)/(-3/2*(-a*b^
2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b))^(1/2)*(-I*(x+1/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1/2)*(-a*b^2)^(1/3)/b)*
3^(1/2)/(-a*b^2)^(1/3)*b)^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2*(-a*b^2)^(1/3)/b-1/2*I*3^(1/2)
*(-a*b^2)^(1/3)/b)*3^(1/2)/(-a*b^2)^(1/3)*b)^(1/2),(I*3^(1/2)*(-a*b^2)^(1/3)/(-3/2*(-a*b^2)^(1/3)/b+1/2*I*3^(1
/2)*(-a*b^2)^(1/3)/b)/b)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^3 + a)^(3/2)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{x^3\,{\left (b\,x^3+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(a + b*x^3)^(3/2)),x)

[Out]

int(1/(x^3*(a + b*x^3)^(3/2)), x)

________________________________________________________________________________________

sympy [A]  time = 1.29, size = 41, normalized size = 0.16 \[ \frac {\Gamma \left (- \frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {2}{3}, \frac {3}{2} \\ \frac {1}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} x^{2} \Gamma \left (\frac {1}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(b*x**3+a)**(3/2),x)

[Out]

gamma(-2/3)*hyper((-2/3, 3/2), (1/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*x**2*gamma(1/3))

________________________________________________________________________________________